Image Steganography
Traditional methods
传统方法主要集中在对图像像素值的直接修改,以嵌入秘密信息。这些方法通常包括最低有效位(LSB)替换等技术。然而,这些方法容易被检测到,因为它们对图像的统计特征产生了显著的影响。
早期阶段
LSB
- 用secret messages替换最小有效位 | replaces the least significant bits with secret messages
- 统计特征改变 -> 导致安全问题 | indiscriminately modifying each pixel without considering the content of cover images can result in a shift in statistical features, raising security concerns.
改进的隐写编码算法
减少对像素修改的痕迹 | To mitigate the traces of pixel modifications
方案:
additive adaptive steganographic frameworks + steganographic encoding algorithms
matrix encodingwet paper encodingSTC encodingSPC encoding- distortion cost functions like
HUGO,SUNIWARD,MiPOD, andAdaBIM
Deep Learning-based schemes
基于深度学习的方法
优点:
- 传统方法需要手工设计 | Traditional methods require manual design of embedding and extraction processes, making it challenging to balance distortion costs and extraction performance.
- DL方法可以自动学习最优策略 | DL methods enable neural networks to autonomously learn optimal strategies.
方案:
HiDDeNpioneers the use of end-to-end training framework, realizing patch-based embedding scheme.
SteganoGANemploys generative adversarial networks to achieve high-capacity image steganography algorithms.
不足:
仍旧是modification-based方法 -> 会留下像素修改痕迹 -> 被隐写分析器(steganalyzers)感知 | However, modification-based image steganography still introduces some distortions due to the alteration of pixels. Such distortions leave traces that can be perceived by steganalyzers.
Generative Steganography
生成式隐写术
基于GAN
基于DMs
[AAAI’25] Establishing Robust Generative Image Steganography via Popular Stable Diffusion
- Title: Image Steganography
- Author: LeoJeshua
- Created at : 2025-02-23 13:32:40
- Updated at : 2025-02-23 14:16:41
- Link: https://leojeshua.github.io/CV/Steganography/
- License: This work is licensed under CC BY-NC-SA 4.0.
